# ON A PROBLEM OCCURRING IN THE THEORY <br> OF OPIIMUM CONTROL WITH AFTEREFFECTS 

## (OB ODNOI ZADAOHE, VOANLKAIUSBCHEI V TEORII OFTIMAL'HOGO REGULROVAMILA S POALEDETEIVIINK)

PMM Vol.30, NO 2, 1966, pp.399-403

V.R. NOSOV
(Moscow)
(Received May 21, 1965)

1. We will consider the following problem of optimum control for systems with artereffects. Let there be given the system

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+B(t) x(t-\tau)+M_{0}(t) u(t), \quad x(t)=\varphi(t), \quad t \in[a-\tau, a] \tag{1.1}
\end{equation*}
$$ and the functional

$$
\begin{equation*}
I[u]=\frac{1}{2} \int_{a}^{b}\left\{x^{*}(t) F(t) x(t)+x^{*}(t-\tau) G(t) x(t-\tau)+u^{*}(t) H(t) u(t)\right\} d t \tag{1.2}
\end{equation*}
$$

Here $x(t)$ and $u(t)$ are $m$-dimensional vectors, $A, B, N, F, G, H$ are quadratic matrices. of the $m$ th order, where $F, G, H$ are positive-definite matrices and $O(t) \equiv 0$ for $t>b$. It will be regarded that all matrix elements are continuous functions of time. The initial vector function $\varphi(t)$ is also regarded continuous in $[a-+, a j$.

It is required to determine Equation $u(t)$ so that the functional (1.2) have a minimum. We regard the control as permissible if it is piece-wise differentiable.

As was shown by Halanay [1 and 2] the problem of finding the optimum control for the syatem (1.1) and the functional (1.2) is equivalent to the following boundary-value problem:

$$
\begin{gather*}
x^{\prime}(t)=A(t) x(t)+B(t) x(t-\tau)-M(t) H^{-1}(t) M^{*}(t) z(t) \\
z^{\prime}(t)=-A^{*}(t) z(t)-B^{*}(t+\tau) z(t+\tau)-[F(t)+G(t+\tau)] x(t)  \tag{1.3}\\
x(t)=\varphi(t), \quad t \in[a-\tau, a] ; \quad z(t)=0, \quad t \in[b, b+\tau]
\end{gather*}
$$

If the problem (1.3) has a solution, then

$$
u(t)=-H^{-1}(t) M^{*}(t) z(t)
$$

w1ll be the optimum control in the problems (1.1), (1.2).
Let us consider a more general problem than (1.3)

$$
\begin{gather*}
x^{\prime}(t)=A(i) x(t)+B(t) x(t-\tau)+C(t) y(t) \\
y^{\prime}(t)=-A^{*}(t) y(t)-B^{*}(t+\tau) y(t+\tau)+D(t) x(t)  \tag{1.4}\\
x(t)=\varphi(t), \quad t \in[a-\tau, a] ; \quad y(t)=\psi(t), \quad t \in[b, b+\tau]
\end{gather*}
$$

As was shown in [1], the problem (1.4) can be reduced to the Fredholm integral equation of second icind. But the kernel of this equation is not
expressible explicitly in terms of the coefficients of the problem (1.4).
Such reduction therefore does not yield simple conditions for the existence of a solution for the problem (1.4).

The present paper will establish certain simple sufficient conditions for the existence of a unique solution of the problem (1.4), or in other words, there shall be obtained the conditions for the existence of the optimum control for the problem (1.1), (1.2).
2. Consider the following problem:

$$
\begin{gather*}
x^{\prime}(t)-A(t) x(t)-B(t) x(t-\tau)+C(t) y(t)=f_{1}(t) \\
y^{\prime}(t)+A^{*}(t) y(t)+B^{*}(t+\tau) y(t+\tau)+D(t) x(t)=f_{2}(t)  \tag{2.1}\\
x(t)=0, \quad t \in[a-\tau, a] ; \quad y(t)=0, \quad t \in[b, b+\tau] \tag{2.2}
\end{gather*}
$$

It w111 be shown below that the problem (1.4) can easily be reduced to the problem (2.1). The systems or equations (2.1) will be expressed in the form of a single operator equation

$$
\begin{equation*}
L\{x(l), y(t)\}=\left\{f_{1}(l), f_{2}(t)\right\} \tag{2.3}
\end{equation*}
$$

We will denote by $N$ a Hilbert space of the continuous in $[a, b] m$ th dimensional vector possessing a quadratically integrable first derivative. The norm in this space is defined as follows:

$$
\begin{equation*}
\left\|x^{2}\right\|_{W}=\int_{a}^{b}\left\{x^{2}(t)+x^{2}(t)\right\} d t \tag{2.4}
\end{equation*}
$$

The space $\boldsymbol{M}$ is complete with respect to this norm.
We will denote by $D_{\mathrm{a}}$ a subspace of the space $W \times W$ the coordinates of which batisfy the condition (2.2), and by $L_{a}$ the vector space the coordinates of which are quadratically summable in $[a, b]$.

Let us consider the problem conjugate to the problem (2.1) and (2.2)

$$
\begin{gather*}
X^{\prime}(t)-A^{*}(t) X(t)-B^{*}(t+\tau) X(t+\tau)+D^{*}(t) Y(t)=g_{1}(t) \\
Y^{\prime}(t)+A(t) Y(t)+B(t) Y(t-\tau)+C^{*}(t) X(t)=g_{2}(t)  \tag{2.5}\\
X(t)=0, \quad t \in[b, b+\tau] ; \quad Y(t)=0, \quad t \in\{x-\tau, a\rceil \tag{2,6}
\end{gather*}
$$

or in short, (2.5) can be expressed in the form

$$
M\{X(t), Y(t)\}=\left\{g_{1}(t), g_{2}(t)\right\}
$$

Here the operator $\mathcal{M}$ is conjugate to $L$. Along with the solutions of the problem (2.5), (2.6), we will investigate the generalized solutions from the space $D_{0}$.

The vector $\{X(t), Y(t)\} \in L_{2}$ will be termed the generalized solution of the problem (2.5), (2.6), if it satisfies the following integral identity:

$$
\begin{gather*}
\int_{a}^{b}\left\{X^{*}(t)\left[\Phi_{2}^{\prime}(t)-A(t) \Phi_{1}(t)-B(t) \Phi_{1}(t-\tau)+C(t) \Phi_{2}(t)\right]+\right. \\
+Y^{*}(t)\left[\Phi_{2}^{\prime}(t)+A^{*}(t) \Phi_{2}(t)+B(t+\tau) \Phi_{2}(t+\tau)+\right. \\
\left.\left.+D(t) \Phi_{1}(t)\right]\right\} d t=\int_{a}^{b}\left\{g_{1}^{*}(t) \Phi_{1}(t)+g_{2}^{*}(t) \Phi_{2}(t)\right\} d t  \tag{2.7}\\
\left\{\Phi_{1}(t), \Phi_{2}(t)\right\} \in D_{0}
\end{gather*}
$$

It is easy to see that each solution of the problem (2.5), (2.6), belonging to the ciass $D_{0}$, satisfies the identity ( 2.7 ). For this it is sufficient to multiply Equation $(2.5)$ by $\varphi_{1}(t)$ and $\Phi_{2}(t)$, to integrate over [ $a, b$ ] to take the first integral in parts and to take into account the boundary conditions ror $\{X(t), \bar{Y}(t)\}$ and $\left\{\Phi_{1}(t), \Phi_{2}(t)\right\}$.

Let us assume now that the matrices $C(t)$ and $D(t)$ are symmetric and positive-definite, $1 . e$. that for all $t \in[a, b]$

$$
\begin{equation*}
C(t)=C^{*}(t), \quad D(t)=D^{*}(t) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\xi^{*} C(l) \xi \geqslant \alpha \xi^{*} \xi ; \quad \xi^{*} D(t) \xi \geqslant \beta \xi^{*} \xi \quad(\alpha, \beta>0) \tag{2.9}
\end{equation*}
$$

Here $\xi$ is an arbitrary m-dimensional vector. It will be shown below that for any solutions of the problem (2.1), (2.2) and the problem (2.5), (2.6) the following inequalities are valid:

$$
\begin{align*}
& \|x\|_{W}+\|y\|_{W} \leqslant C_{1}\left\{\left\|f_{1}\right\|_{L_{2}}+\left\|f_{2}\right\|_{L_{2}}\right\}  \tag{2.10}\\
& \|X\|_{L_{2}}+\|Y\|_{L_{2}} \leqslant C_{2}\left\{\left\|g_{1}\right\|_{L_{3}}+\left\|g_{2}\right\|_{L_{2}}\right\} \tag{2.11}
\end{align*}
$$

It follows from the inequality (2.10) that the problem (2.1), (2.2) can have only one solution. Also [3], it follows from (2.10) that the operator $L$ is a closed operator in the space $D_{0}$, or in other words, the set of values $p(L)$ of the operator $L$ is a ciosed subspace of the apace $L_{\mathrm{a}}$. We will show that $A(L)$ coincides with the entire $L$, i.e. that the operator implements the mutually single valued mapping of the space $D_{0}$ on $L_{2}$. This means that for any $\left\{f_{1}, f_{2}\right\} \in L_{2}$ there shail be such $\{x, y\} \in D_{0}$, that $\mathcal{L}\{x, y\}$ $=\left[f_{1}, f_{2}\right]$, or that the problem $(2.1),(2,2)$ has a solution for all $\left\{f_{1}, f_{3}\right\} \mathcal{E L}_{2}$. For the proof of the coincidence of $A(L)$ and $L_{2}$ we will show thet $L_{9}$ has no element of $\{x, y\}$ different from zero and orthogonal to all $R(L)$, i.e. we will show that if

$$
\begin{equation*}
\int_{a}^{b}\left\{X^{*}(t)\left[x^{\prime}(t)-A(t) x(t)-B(t) x(t-\tau)+C(t) y(t)\right]+\right. \tag{2.12}
\end{equation*}
$$

$\left.+Y^{*}(t)\left[y^{\prime}(t)+A^{*}(t) y(t)+B^{*}(t+\tau) y(t+\tau)+D(t) x(t)\right]\right\} d t=0, \quad\{x, y\} \in D_{0}$ then it follows that $X(t) \equiv 0, \quad Y(t) \equiv 0$.

Comparing (2.12) and (2.7) we see that the last statement coincides with the uniqueness theorem for the generalised solution of the problem (2.5), (2.6) but the uniqueness theorem of the generalised solution of the probiem $\{2.5\}$, 2.6 ) follows from the inequality (2.11). Indeed, the inequality (2.11) indicates that the operator $N$ can be expanded over all space $L$. and that it is closed in $L_{\mathrm{a}}$. Also, according to a known theorem ([3], $p$. 555) we find that for any $\{X, Y\} \in L_{2}$ the inequality

$$
\begin{equation*}
\|X\|_{L_{2}}+\|Y\|_{L_{2}} \leqslant C_{2}\left\|M^{\circ}\{X, Y\}\right\|_{L_{7}} \tag{2.13}
\end{equation*}
$$

is valid where $N^{*}$ denotes the expancion of the operator $N$ over $L_{2}{ }_{\varepsilon}$ We note, finally, that the generalized solution of the problem (2.5), (2.6) can be determined not only with the ald of the identity (2.7) but aiso as a solution of the operational equation

$$
\begin{equation*}
M^{\circ}\{X, Y\}=\left\{g_{1}, g_{2}\right\} \tag{2.14}
\end{equation*}
$$

But the solution of Equation (2.14), or the generalised solution of the problem (2.5), (2.6), satisfies the inequality ( 2.11 ). The uniquenese theorem of the generalized solution for the problem (2.5), (2.6) follow directiy from the inequality ( 2.11 ). Thus, if the inequalities ( 2.10 ), ( 2.11 ) are satisfied then it is proved that the problem $(2.1),(2.2)$ is uniquaiy solvable for any $\left\{f_{1}, f_{8}\right\} \in L_{2}$. The functions from $D_{0}$ are continuous in $[a, b]$ and

$$
x^{\prime}(t)=A(t) x(t)+B(t) x(t-\tau)-C(t) y(t)+f_{1}(t)
$$

Consequentiy, any solution of the problem (2.1), (2.2) belonging to $D_{0}$ has continuous first derivatives if the metrices $A, B, C, D$ and $f_{i}, f_{a}$ are continuous in $[a, b]$.

Thus, the existence proof for the unique solution of the problem (2.1), (2.2) is reduced to the proof of the inequalities (2.20) and (2.11).

We will establish these inequalities. We will prove at first the simpler Inequality

$$
\begin{equation*}
\|x\|_{L_{2}}+\|y\|_{L_{2}} \leqslant C_{3}\left\{\left\|f_{1}\right\|_{L_{2}}+\left\|f_{2}\right\|_{L_{2}}\right\} \tag{2.15}
\end{equation*}
$$

The first equation in (2.1) is dot multiplied by $u(t)$, the second by $x(t)$ and the two equations are summed. Then

$$
\frac{d}{d t}(x(t), y(t))+(C(t) y(t), y(t))+(D(t) x(t), x(t))+
$$

$+\left(B^{*}(t+\tau) y(t+\tau), x(t)\right)-(B(t) x(t-\tau), y(t))=\left(f_{1}(t), y(t)\right)+\left(f_{2}(t), x(t)\right)(2.16)$

We integrate now (2.16) over $t$ from $a$ to $b$. Then on the strength of the conditions (2.2), the first term of this equality vanishes and

$$
\begin{gather*}
\int_{a}^{b}\left(B^{*}(t+\tau) y(t+\tau), x(t)\right) d t=\int_{a=\tau}^{b-\tau}\left(B^{*}(t+\tau) y(t+\tau), x(t)\right) d t= \\
=\int_{a}^{b}\left(B^{*}(\xi) y(\xi), x(\xi-\tau)\right) d \xi=\int_{a}^{b}(B(t) x(t-\tau), y(t)) d t \tag{2.17}
\end{gather*}
$$

Taking into account (2.17) we find that

$$
\begin{equation*}
\int_{a}^{b}\{(C(t) y(t), y(t))+(D(t) x(t), x(t))\} d t=\int_{a}^{b}\left\{\left(f_{1}(t), y(t)\right)+\left(f_{2}(t), x(t)\right)\right\} d t \tag{2.18}
\end{equation*}
$$

From (2.18) and due to (2.8) and (2.9), we find easily that

$$
\begin{equation*}
\alpha\|x\|_{L_{2}}{ }^{2}+\beta\|y\|_{L_{2}}{ }^{2} \leqslant \frac{2}{\beta}\left\|f_{1}\right\|_{L_{2}}{ }^{2}+\frac{2}{\alpha}\left\|f_{2}\right\|_{L_{2}}{ }^{2}+\frac{\alpha}{2}\|x\|_{L_{2}}{ }^{2}+\frac{\beta}{2}\|y\|_{L_{2}}{ }^{2} \tag{2.19}
\end{equation*}
$$

Equation (2.15) follows immediately from (2.19). We note that the constant $C_{3}$ in the inequality (2.15) is determined only by the quantities a and $B$.

We establish now (2.10). For this the firat equation in (2.1) is dot multiplied by $x^{\prime}(t)$, the second by $y^{\prime}(t)$, the equations axe integrated in the interval $[a, b]$ and are added. Then to each of the derived integrais we apply the inequality

$$
\int_{a}^{b}(\xi(t), \eta(t)) d t \leqslant e\|\xi(t)\|_{L_{2}}{ }^{2} 4 \frac{1}{e}\|\eta(t)\|_{L_{3}}{ }^{2}
$$

and set $\varepsilon=1 / 4$. Then

$$
\begin{gather*}
\left\|x^{\prime}\right\|_{L_{2}}{ }^{2}+\left\|y^{\prime}\right\|_{L_{2}}{ }^{2} \leqslant 8\|A(t) x(t)\|_{L_{2}}{ }^{2}+8\|C(t) y(t)\|_{L_{2}}{ }^{2}+8\|B(t) x(t-\tau)\|_{L_{2}}{ }^{2}+ \\
+8\|D(t) x(t)\|_{L_{1}}{ }^{2}+8\left\|A^{*}(t) y(t)\right\|_{L_{2}}{ }^{2}+8\left\|B^{*}(t+\tau) y(t+\tau)\right\|_{L_{2}}{ }^{2}+8\left\|f_{1}(t)\right\|_{L_{2}}{ }^{2}+ \\
+8\left\|f_{2}(t)\right\|_{L_{2}}{ }^{2}+1 / 2\left\|x^{\prime}\right\|_{L_{2}}{ }^{2}+1 / 2\left\|y^{\prime}\right\|_{L_{2}}{ }^{2} \tag{2.20}
\end{gather*}
$$

Let the elements of the matrices $A, B, C, D$ be measurable and bounded functions in $[a, b]$. Then utilizing the inequality (2.15) we obtain from (2.20) the inequality ( 2.10 in which the constant $C_{1}$ depends only on the coefficients of the system (2.1).

This proves the inequality (2.10). The inequality (2.11) is established analogously to (2.15). Thus the theorem is fully proved.

Theorem 2.1. Let the matrices $A, B, C, D$ be measurable and bounded in $[a, b]$ and the matrices $C$ and $D$ satisfy the conditions ( 2.8 ), (2.9) almost everywhere in $[a, b]$. Then for any $\left\{f_{1}, f_{2}\right\} \in L_{2}$ there exists a unique solution of the problem (2.1), (2.2) belonging to the space $D_{0}$.

If, in addition, the coefficient matrices of the system (2.1) and the right-hand sides of $f^{\prime}$ and $f a$ are continuous in $[a, b]$, then the solution of the problem (2:1), $(2.2)$ has continuous derivatives.

Note l. Let us reduce the problem (1.4) to the problem (2.1), (2.2). It will be shown first that the problem (1.4) can have onjy a unique solution. Indeed, let $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{a}\right\}$ be two solutions of the problem (1.4). Then $\left\{x_{1}-x_{z}, y_{2}-y_{a}\right\}$ is a solution of the problem (1,4 with zero boundary conditions. But then $1 t$ follows from the inequality $(2.10)$ that

$$
x_{1}-x_{2} \equiv 0, \quad y_{1}-y_{2} \equiv 0
$$

Let us now select the functions $x_{0}(t)$ and $\nu_{0}(t)$ such that

$$
\begin{array}{lll}
x_{0}(t)=\varphi(t), & t \leqslant a ; & x_{0}(t)=\varphi(a), \\
y_{0}(t)=\psi(t), & b \leqslant t ; & y_{0}(t)=\psi(b), \\
a \leqslant t \leqslant b
\end{array}
$$

Consider the difference $x(t)-x_{0}(t)=x_{3}(t), \quad y(t)-y_{0}(t)=y_{3}(t)$. It is easy to see that $\left\{x_{3}(t), y_{3}(t)\right\}$ is a solution of the problem (2.1), (2.2) in which

$$
\begin{aligned}
& f_{1}(t)=x_{0}^{\prime}(t)-A^{\prime}(t) x_{0}(t)-B(t) x_{0}(t-\tau)+C(t) y_{0}(t) \\
& f_{2}(t)=y_{0}^{\prime}(t)+A^{*}(t) y_{0}(t)+B^{*}(t+\tau) y_{0}(t+\tau)+D(t) x_{0}(t)
\end{aligned}
$$

If $\varphi$ and are quadratically integrable over their regions of definition, then $\left\{f_{1}, f_{2}\right\} \in L_{2}$, and if in addition $\Phi$ and are continuous then also $f_{1}$ and $f_{z}$ are continuous.

Having utilized the uniqueness of the solution for the problem (1.4) we see that the assertion of the Theorem 2.1 is valid also for the problem (1.4).

Note 2 . Theorem 1 remains valid also when one of the numbers a, - or both simuitaneously become infinite. This can be easily seen if it is taken into account that the constants in the evaluations of (2.10), (2.11) are independert of the integration interval, and that the space $D_{0}^{\prime}$ is understood as the function space quadratically summable and possessing a quadratically summable first derivative.

Note 3. For the case when the lag depends on time it is possible to prove a type of the Theorem 2.1 for the problem of the form

$$
\begin{gathered}
x^{\prime}(t)-A(t) x(t)-B(t) x(t-\tau(\gamma(t)))+C(t) y(t)=f_{1}(t) \\
y^{\prime}(t)+A^{*}(t) y^{\prime}(t)+B^{*}(t+\tau(t))\left(1+\tau^{\prime}(t)\right) y(t+\tau(t))+D(t) x(t)=f_{2}(t)
\end{gathered}
$$

$$
x(t)=0, \quad t \leqslant a ; \quad y(t)=0, \quad t \geqslant b
$$

Here $\gamma(t)$ denotes an inverse function to $t-\tau(t)$ (it is assumed that such function exists). The special form of the equation ensures the fulfillment of ( 2.17 ) in this case as well. The remaining proof is ilterally repeated.
3. We establish still another indication for the existence of a unique solution of the problem (1.4). Let us investigate a more general problem

$$
\begin{gather*}
x^{\prime}(t)=A(t) x(t)+B(t) x(t-\tau(t))+C(t) y(t)+f_{1}(t) \\
y^{\prime}(t)=D(t) y(t)+E(t) y(t+\tau(t))+F(t) x(t)+f_{2}(t)  \tag{3.1}\\
x(t)=\varphi(t), \quad t \leqslant a ; \quad y(t)=\psi(t), \quad t \geqslant b
\end{gather*}
$$

Here $A, B, C, D, E, F$ are arbitrary continuous quadratic matrices of order $m ; \phi(t), f(t)$ and $f_{1}(t), f_{a}(t)$ are continuous functions.

The problem (3.1), (3.2) can be reduced to the Fredholm integral equation of second kind, analogousiy to what was done in [1], and then prove the existence of the solution for problem (3.1), (3.2) by the method of successive approximations. However, since the kernel of this integral equation is not known explicitiy, it is mare convenient to apply the method of successive approximations directiy to the problem (3.1), (3.2).

We will prove the following theorem.
Theorem 3.1. Let the matrices $A, B, C, D, E, F$ be continuous; $\varphi, \phi, f_{1}, f_{2}$ are also continuous. Let in addition

$$
\begin{equation*}
\int_{a}^{b}(\|A(t)\|+\|B(t)\|+\|F(t)\|) d t \leqslant \delta<1 \int_{a}^{b}(\|C(t)\|+\|E(t)\|+\|L(t)\|) d t \leqslant \delta<1 \tag{3.3}
\end{equation*}
$$

Then the problem (3.1), (3.2) has a unique solution. Let us pass from the problem (3.1),(3.2) to the integral equations

$$
\begin{align*}
& x(t)=\varphi(a)+\int_{a}^{1}\left\{A(\xi) x(\xi)+B(\xi) x(\xi-\tau(\xi))+C(\xi) y(\xi)+f_{1}(\xi)\right\} d \xi  \tag{3.4}\\
& y(t)=\psi(b)+\int_{i}^{b}\left\{D(\xi) y(\xi)+E(\xi) y(\xi+\tau(\xi))+F(\xi) x(\xi)+f_{2}(\xi)\right\} d \xi
\end{align*}
$$

Here we take

$$
x(t)=\varphi(t), \quad t \leqslant a ; \quad y(t)=\psi(t), \quad t \geqslant b
$$

Define $x_{0}(t), y_{0}(t)$ the same way as in (2.21) and construct $x_{1}(t)$ and $y_{1}(t)$ in accordance with Formulas

$$
x_{1}(t)=\varphi(t) \quad(t \leqslant a)
$$

$x_{1}(t)=\varphi(a)+\int_{a}^{t}\left\{A(\xi) x_{0}(\xi)+B(\xi) x_{0}(\xi-\tau(\xi))+C(\xi) y_{0}(\xi)+f_{1}(\xi)\right\} d \xi \quad(t \geqslant a)$
$y_{1}(t)=\psi(t) \quad(b \leqslant t)$
$y_{1}(t)=\varphi(b)+\int_{t}^{b}\left\{D(\xi) \cdot y_{0}(\xi)+E(\xi) y_{0}(\xi+\tau(\xi))+F(\xi) x_{0}(\xi)+f_{2}(\xi)\right\} d \xi \quad(t \leqslant b)$
Then the $x_{n}(t), y(t)$ are construsted analogously. It is easy to see that in rulrilling the conditions (3.3)

$$
\left\|x_{n}-x_{n-1}\right\|_{C}+\left\|y_{n}-y_{n-1}\right\|_{C} \leqslant \delta\left\|x_{n-1}-x_{n-2}\right\|_{c}+\delta\left\|y_{n-1}-y_{n-2}\right\|_{c}
$$

1.e. that the integral operator (3.4) is the contraction operator in the space $0\{0, \delta]$ It has a single fixed point which is the solution of the problem (3.1), (3.2).

The Theorem 3.1 is proved.

## BIBLIOGRAPHY

1. Halanay, A., Systemes optimaux a retardement et quelques probldmes nouveaux dans la théorie des byttmes à argument déplacé. Nonlinear vibration problems. Zagadnienia Drgań Nieliniorych, Vol.5, 1963.
2. Halanay, A., Systames a retardement. Resultats et problemes. Tagungsberioht der III Konferenz tber Niohtlineare Schwingungen, Berlin, 1965.
3. Smirnov, V.I., Kurs vygshei matematiki (Course of Higher Mathematics). Vol.V, F1zmatgiz, 1959.
