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1. We will consider the following problem of optimum control for systems
with aftereffects. Let there be given the system 1.1)

dW)=4@)z@W)+BWz(t— 1)+ M@Bu(@), z@)=9¢(), tcla—r1,a]
and the functional
b

I[4] =—;—S{z' OF @) z(t)+2*(t—1)C()z(t—7)+u () H{M)u()}dt (1.2)

Here x(t) and u(t) are m-dimensional vectors, 4, B, N, F, G, # are
quadratic matrices.of the mth order, where F, 0, # are positive-definite
matrices and G(t) = O for ¢t > b ., It will be regarded that all matrix
elements are continuous functions of time. The initial vector function o)
18 also regarded continuous in [@ — t , a] .

It 18 required to determine Equation u(t) so that the functional (1.2)
have a minimum. We regard the control as permissible if 1t is piece-wise
differentiable.

As was shown by Halanay [1 and 2] the problem of finding the optimum con-
trol for the system (1.1) and the functional (1.2) is equivalent to the fol-
lowing boundary-value problem:

ZW)=A @)z (@) + B )zt — 1) — M ()H ()M* ()z ()
F@)=—A*(W)s@Q)—B @+ ¢+ —[F@)+ G+ 1)z (D) (1.3)
z(W)=¢ (@), t&[a—r1,a]; z()=0, te b b+ 1)

If the problem (1.3) has a solution, then
u(t) =w— H1()M* (1)z (1)
will be the optimum control in the problems (1.1), (1.2).
Let us consider a more general problem than (1.3)
@A) =ACz @)+ Bz (t— 1)+ C(y @)
Y(@)=—A*Wy@)—B* @+ 1y (t+ 1)+ D (@)z® (1.9
z()=¢@¢), t&la—rm, a] y (@) =% (@), telbb4 1]

Aes was shown in (1], the problem (1.4) can be reduced to the Fredholm
integral equation of second kind. But the kernel of this equation is not
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expressible explicitly in terms of the coefficlents of the problem {1.4}.
Such reduction therefore does not yleld simple conditions for the existence
of a solution for the problem (1.4{.

The present paper will establish certain simple sufficient conditions for
the existence of a unique solution of the prcblem (1.4), or in other words,
there shall be obtained the conditions for the existence of the optimum con~-
trol for the problem (1.1), (1.2).

2. Consider the following problem:

) -4ty — Bzt — O+ C Wy = 1)
VO + Ay OBty D@z =/ (2.1)
z() =0, tela—m,al; y()=0, te b b+ 1] (2.2)

It will be shown below that the problem (1.4) can easily be reduced to the
problem (2.1). The systems of equations {2.1) will be expressed in the form
of a single operator equation

Liz(t), y ()} = {f1 (1), f5 ()} (2.3)

We will denote by ¥ a Hilbert space of the continuous in [a, »] mth
dimensional vector possessing a quadratically lntegrable first derivative.
The norm in this space 1s defined as follows:

b

letly = § @20 + a2 e 2.4
a
The space N 18 complete with respect to this norm.

We will denote by D, & subspace of the space N X ¥ the coordinates of
which satisfy the condition (2.2), and by L, the vector space the coordi-
nates of which are quadratically summable in [a, 2].

Let us consider the problem conjugate to the problem (2.1) and (2.2)

X(—A*@X () —B* ¢+ DX+ 9+ DOV () =g
VO +A@QY@O+BY t—0+C*0XO=g0 2.5
X(=0, teibb+ 1l Y{)=0 tcisa—r7,al (2.6)

or in short, {2.5) can be expressed in the form
M {X (t)v y (l)} = {gl (t)a g2 (t)}

Here the operator N is conjugate to I ., Along with the sclutions of
the problem‘a(a.s), {2.6),we will investigate the generalized solutions from
the space D, .

The veetor {X (1), Y (1)} EL: will be termed the generalized solution of the
problem (2.5),(2.6), if it satisfies the following integral identity:

b
S {X* () [D (1) — AR) DL () — B(O) D1 [t —7) + C () Da(B)] +
’ FY* )0/ () + A () O (D) + B+ D+ D+
b
+ DD ()]} dt = S {£1* (1) ©1 (3) -+ ga* (1) @ (1)} d 2.7

{Ox?t). @ (1)} & Do

It is easy to see that each solution of the problem (2.5),(2.6), belong-
ing to the class J,, satisfies the identity ('2.75). Por this it is suffici~
ent to multiply Equation {2.5) vy &, (¢t) and 9,(f), to integrate over [a,]
to take the first integral in parts and to take into account the boundary
conditions for (X (1), Y (1)} and (O, (), Py ()}

Let us assume now that the matrices C(t) and 2(¢) are symmetric and
positive-definite, 1.e. that for all ;& [a,d]
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C (1) = C* (1), D (1) = D* (1) (2.8)
EC ()8 >al*E;  §*D ()t > BE*t (@ B >0) (2.9)

Here & 1s an arbitrary m-dimensional vector. It willl be shown below
that for any solutions of the problem (2.1),(2.2) and the problem (2.5),(2.6)
the following inequalities are valid:

Izlw +1yiw < Cr{l hlly, + 1120} (2.10)
X, + 1Y llp, <Caflall,, +Ngaly,} (2.11)

It follows from the inequality (2.10) that the problem (2.1),(2.2) can
have only one solution. Also [3), 1t follows from (2.10) that the operator
L is a c%oaed operator in the space JD,, or in other words, the set of
values R(L) of the operator L 1is a closed subspace of the space L,. We
will show that &(L) coincides with the entire L,, i.e. that the operator
implements the mutually single valued mapping of the space D, on . This
means that for any {f;, /;) €L, there shall be such {z, y} € D, that z[.r,y‘
= {7, ,/s], 0or that the problem (2.1),( 2; has a solution for all {f;, f;} € L,.
For the proof -of the coincidence of R(L and [, we will show that l has
no element of {x,yl different from zero and orthogonal to all #(L) , i.e.
we will show that 1if

b

{xroEo-anz0-Bwze—a+cmymi+ (2.42)

LYY 0+ 4 OY () + B* (¢ +DYE+7)+ DOz @]}t =0, {z, y} € Do

then 1t follows that X (1) =0, Y () =0.

Comparing (2.12) and (2.7) we see that the last statement coincides with
the uniqueness theorem for the generalized solution of the problem (2.5),
2.6) but the uniqueness theorem of the generaliged solution of the problem
2.5),(2.6) follows from the inequality {2.11). Indeed, the inequality
2.11) indicates that the operator ¥ oan be expanded over all space L,
and that it is closed in L,. Also, according to a known theorem ([3), p.
555) we £ind that for any {X,Y} L, the inequality

X, + 1Y 1z, S Coll M°{X, Y}y, (2.13)

is valid where N° denotes the expansion of the operator N over L,., We
note, finally, that the generalized solution of the problem (2.5),(2.5) can
be determined not only with the aid of the identity fz.'r) but also as a solu-
tion of the operational equation

M°{X, Y} = {gn, &} (2.14)

But the solution of Equation (2.1%), or the generaliged solution of the
problem (2.5),(2.6), satisfies the inequality (2.11). The uniqueness theorem
of the generalized solution for the problem (2.5),(2.6) follows directly from
the inequality (2.11). Thus, if the inequalities (2.10),(2.11) are satisfied
then it is proved that the problem (2.1),(2.2) is uniquely solvable for any
{fis Iy} EL;. The functions from D, are continuous in [a,2) and

=A@z @)+ B@zt—1)—C )+ £ ()

Consequently, any solution of the problem (2.1),(2.2) belonging to Do
has continuous first derivatives if the matrices 4, %2, C, 2 and 2,, J,
are continuous in [a,2].

Thus, the existence proof for the unique solution of the problem (2.1),
(2.2) is reduced to the proof of the inequalities (2.10) and (2.11).

U:lvlli.ll establish these inequalities. We will prove at first the simpler
ine t
quaiity bl o, + ¥l < Cs A fally, + Wale} (2.15)

The firast equation in (2.1) 1s dot multiplied by y(t) , the second by
x(t) and the two equations are summed. Then

d
2t @@y @)+ (€ (y (1), y (1) + (D ()= (1), z (1) +
+ @B* e+ Y+ 1), z@) — B Oz — 1),y @)= (), y @)+ (fa (1), z (1) (2.16)
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We integrate now (2.16) over ¢t from @ to Y . Then on the strength of
the conditions (2.2), the first term of this equality vanishes and

b b=t
Vet ayetn, supa = § Bresnuesn, soya=
a b a=-T b1
= S (B* (B y (E), (5 —1))dE-= S(B(t)x(t——t), y (8) dt (2.47)

Taking into account (2.17) we find that
b b
Si(C @Oy y@)+ (D)= (), x(2))dt = S {{(fr(t), y )+ (Ja(®), = ()} dt (2.18)

From (2.18) and due to {2.8) and (2.9), we find easily that

MMM+MMJ<%

Equation (2.15) follows immediately from (2.19). We note that the con-
stant O, in the inequality (2.15) is determined only by the quantities g«
and B .

We establish now (2.10). Por this the first equation in (2.1) is dot
multiplied by x’{(¢) , the second by L’l(t) , the equations are integrated
in the interval [a,d] and are added. en to each of the derived integrals
we apply the inequality

b
S(ﬁ @), n@)dt et ()24 %""l(t) ('
and set ¢ =1/, . a’I‘nen

Il 24y <8 A@) =) [ +8ICHY O +8I BBzt —1)]? +
+8 D)= () 2+ 8lA* )y @) 2+8IB*¢+Vyt+ D2 +BIHO]2+
+8lfa @2+ Yl =l + el L} (2.20)

Let the elements of the matrices 4, p, ¢, P be measurable and bounded
functions in [a,2]) . Then utilizing the inequality (2.15) we obtain from
(2.20) the inequality (2.10% in which the constant (, depends only on the
coefficients of the system (2.1).

This proves the inequality (2.10). The inequality (2.11) i1s established
analogously to (2.15). Thue the theorem is fully proved.

Ihlei+ 2kl + Shel + Shul? (219

Theorem 2.1 . Let the matrices 4, B, C, D be measurable and
bounded in [a, 2] and the matrices ¢ and J satisfy the conditions (2.8),
(2.9) almost everywhere in [a, b] . Then for any {f,, fo} &L, there exists
a unique solution of the problem (2.1), (2.2) belonging to the space D,.

If, in addition, the coefficlent matrices of the system (2.1) and the
right-hand sides of f, and [/, are continuous in [a, 2], then the solution
of the problem {2:1), 12.2) has continuous derivatives.

Note 1 . Let us reduce the problem (1.4) to the problem (2.1),(2.2).
It will be shown first that the problem (1.4) can have only a unique solution.
Indeed, let {x,,¥,} and {x;,ys] be two solutions of the problem (1.4). Then
{x,— X2, Yy— Va} is a solution of the problem (1.4) with zero boundary con-
ditiona. but then it followe from the inequality (2.10) that

3 —z,=0, n—y=0
Let us now select the functions x,(t) and gy, (t) such that
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=91, t<g =g, a<t<bh
v @ =9, <4 Yo () =V (), a<<t<b .21
Consider the difference Z (t) — Zo(t) = 23 (t)y y{1) —yo(!) = ¥3 (). 1t 1s
easy to see that {x,(¢), ys(t)] 1s a solution of the problem (2.1), (2.2)
in which
() = ap (1) — A () (1) — B (t)z, (¢ — 1) + C (Dy, (2)
f2 (8) = yo' (8} + A% (yo () + B* (¢ + W)y, (¢t + 1) + D (1), (1)
Ifr and are quadratically integrable over their regions of defini-

® v
tion, then {fi, fa} EL, and 1f in addition g and § are continucus then
also J, and [f,; are continuous.

Having utilized the uniqueness of the solution fpr the problem (1.4) we
see that the assertion of the Theorem 2.1 is valid also for the procblem (1.4).

Note 2 . Theorem 1 remains valid also when one of the numbers a ,
® or both simultaneously become infinite. This can be easily seen if 1t is
taken into account that the constants in the evaluations of (2.10),(2.11)
are independent of the integration interval, and that the space D, is under-
stood as the function space guadratically summable and possessing a quadrati-
cally summable first derivative.

Note 3 . For the case when the lag depends on time it 1s possible
to prove a type of the Theorem 2,1 for the problem of the form

() — A (e (1) — B )z (¢ — wy (1) + € (y () = £, (1)
i +AT OO +B T+ T @yt @)+ D0z @) = [ ()
ey =0, t<a y() =0, t>b
Here y(t) denotes an inverse function to ¢t — 7(¢) (it is assumed that
such a function exists). The special form of the equation ensures the ful-

fillment of (2.17) in this case as well. The remaining proof is literally
repeated.

3. We establish still another indication for the existence of a unlique
solution of the problem (1.%). Let us investigate & more general problem

P =AM+ BWsE—T@ 1 COr©+h©
y=D@ew®O+E@Qui+T@)+F@z)+ L) (3.1)
z()=¢(), t<a yO=%p@), t>b 3.2)
Here A4, B, ¢, D, X, F are arbitrary continuous quadratic matrices of
order m ; ¢tt) , t(ts and. f, (t), f.(t) are continuous functions.

The problem (3.1),(3.2) can be reduced to the Predholm integral equation
of second kind, analogously to what was done in 51], and then prove the
existence of the solution for problem (3.1),(3.2) by the method of suceessive
approximations. However, since the kernel of this integral equation 1is not
known explicitly, it is mare convenient to apply the method of successlve approx-
imations directly to the problem (3.1),(3.2).

We will prove the following thecrem.
Theorem 3.1 . Let the matrices 4, 3, ¢, D, £, F be continuous;
9, ¥, i, Ja are also continuous. Let in addition
b b
S(lIA(2)1I+lIB(t)II+IIF(tHl)dl<5< 1 S (ICOI-HIE@I+IL@Da<bt (3.3)
a a

Tren the problem (3.1),(3.2) has a unique solution. Let us pass from the
problem (3.1?,(3.2) to the integral equations
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1
2 =)+ \{A@) () + BE G~ T(E)+C (B y(E) + hE) dk
B (3.4)
b
vO=v®+{{PEYO+EQVE+TE) +FEE) +AEN %
t
Here we take
z() =9 @), <a gy =9, t>b

Define xo(t), yo(t) the same way a&s in (2.21) and conatruct x,(t) and
# (t) in accordance with Formulas

z{t) =@ (t) t<a
t
% ()=o) + S {A(E)x0(€) + B () 20 (E— 1 (})) + C () %o (&) + N1 (E)} 2k (t>a)

\ yi(t) =9 (t) (CAND))
wm=¢@H—SWQWM@+EMW&+T&»+F@HMQ+&@N& (t<h)
t

Then the x,(t), y{t) are construsted analogously, It 1s easy to see that
in fulfilling the conditions (3.3)

“ Zn — In_l HC + n yn - yn_}_ nC < 6 “ z., -1 xn—g HC + a u yn~1'_ yn—z “C

i.e. that the integral operator (3.4) is the contraction operator in the
space It has a single fixed point which is the solution of the

¢,bi| .
problem (3,1},(3.2).
The Theorem 3.1 1s proved,
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