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1. We will consider the following problem of optimum control for systems 
with aftereffects. Let there be given the eyetem (1.1) 

2’ 0) = A (t)z (4 + B (4~ (t - T) + M. (t)u (t), = (4 = cp (4, t E Ia - T, al 
and the functional 

b 

1 [u] = +s {5* (1) F ff) 2 (q + z* (f --T) G (t) 2 (f -T) + 24. (t) H (f) u (f)) df (1.2) 
a 

Here r(t) and u(t) are m-dimensional veotors, A, 8, M, F, 0, E are 
quadratic matrlcee.or the nth order, 
matrices and C?(t) = 0 for t > b . 

where F, 0, R are positive-definite 
It will be regarded that all matrix 

elements are continuous functions of time. 
1s also regarded continuous ln [a - T , O] . 

The Mtlal vector function q(t) 

It 16 required to determine Equation u(t) so that the functional (1.2) 
have a w. We regard the control a1 permlaslble IS It is plCCe-WlBe 

dlrferentlable. 

As wae shown by Halanay (1 and 23 the problem of Slndlng the optimum con- 
trol Sor the syrtem (1.1) and the runctional (1.2) is equivalent to the fol- 
lowing bounUary-value problem: 

z' (1) = A (t)s (t) t B (t)z (t - z) - ii! (t)H-1 (t)M* (t)z (t) 

I’ (t) = - A” (t)z (t) - B* (t + I+ (t + z) - [F (t) + G (t + r)]s (t) 

1: (t) = P (t), t E ia - z, al; z (t) = 0, t E lb, b + 71 
If the problem (1.3) has a aolutlon, then 

u (t) = * H-1 (t)M* (t)z (t) 

(1.3) 

will be the optimum control In the problems (l.l), (1.2). 

Let us consider a more general problem than (1.3) 

t' (t) = A (.')z (1) + B (t)s (t - T) + C (c)Y (I) 

Y’ (t) = - A* NY (4 - B* 0 + 4y (t + 4 + D Ub 01 0.4) 
z U) = 9, Q), t E ra - 'c, al; Y (d = It (O* t E [b, b + tl 

As was shown ln cl], the problem 11.4) can be reduced to the Fredholm 
Integral equation of 8econd kind. But the kernel of this equation is not 
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482 9. 1. no8OV 

exprese%bLe explicitly in terms of the coefficients of the problem (1.4). 
Such reduction therefore does not ield simple oondltfons for the existence 
of a solution for the problem (1.4 7 , 

The Preeent paper will efItabllsh certain slmpfe aufflclent condition8 for 
the existence o? a unique solution of the problem (1.4), or in other worde, 
there shall be obtained the crondltlone for the sxietenoe of the optimum con- 
trol for the problem (l,l), (1.2). 

0, Consider the following problem: 

z8 @I -A (t)s(tf - B ft)x ft - z) + c (t)y (t) = fl (t) 
Y’ 0) + A+ (tfu 0) + D” (t + z)v (t t- 4 + D (t)x 0) = fz (1) (2.1) 

2 (c) = 0, t E Ia - 7, al; Y (0 = 0, t E b, b + ~1 (2.2) 

It will be ahown below that the problem (1.4) can easily be reduced to the 
problem (2.1). The sy8teIM of equations (2.1) will be expressed in the form 
of a eingle operator aquatlon 

Lk (Ot Y WI - th 01, fa fQ3 (2.31 

Ye will denote by W a Hllbert spaoe of the continuous in [a, Xr] mth 
dimensional vector possesslng a quadratically integrable first derivative. 
The norm in this space is defined a8 follows: 

a 
The space K is complete with respect to this norm. 

We will denote by DO a subupace of the space W x W the coordinates 6f 
which aatlefy the condition (2.21, and by La the vector space the coordl- 
nates of which are quadratically ewble In [a, b]. 

Let us consider the problem conjugate to the problem (2.1) and (2.2) 

X’ (t) - Af (c)X ftf - 3’ (t -I- zjx (r + 2) + DC ff)Y (t) = & (ff 
Y’ (tf -I- A (c)Y it) -I- 3 (t)Y ft - zf + c* it)X @I = $32 ftf G=d 

x (t> = 0, c E Ib, b + 21; Y (1) = 0, t E !9 - z, a-] (236) 

or In short, (2.5) QM be expressed in the form 

M w (21, y 1~11 = kl (0% &d (01 

Here the operator W is oonjugate to L . Along with the solutions of 
the problem (2.53, (2.6),we will investigate the generalized eolutione from 
the space Da . 

The vector (X t& Y (1)) E-& will be termed the generallsed aolut$on of the 
problem (2.5),(2.6), if it satlafiea the following integral identity: 

(2.7) 

It Is easy to see that each solution of the problem (2.5),(2.6), belong- 
Sng to the 018~s Ocl, satisfies the fdentlty c2. 
tnt to multiply Equation (2.5) by (b,(t) and T 

). For wils it Is sufficl- 
es t), to integrate over Co,b] 

to take the first integral in parts and to take into account the boundary 
cond~t9.o~ for (X (f), Y (t)} ma (Qb, (4, Qo, WI. 

Let UEI a8aume now that the matricea C(C) and D(t) are eynmtatric and 
positive-definite, I.e. that for all te (a,b] 
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c (t) = c* (C). D (t) = D* (1) (2.8) 
E*C WE 2= 4.*5; 5’ D @)E >, WE (a9 B > 0) (2.9) 

Here < Is an arbitrary m-dlrnelonal vector. It will be shown below 
that for any eolutlone of the problem'(2.1),(2.2) and the problem (2.5),(2.6) 
the f&lowing Inequalities are valid: 

ll4lw i- IIYIIW d Cl w&, + llfdl~,) (2.10) 

I1 x IIL, + II y II& G ca {II g1 nt, + II ire II&I (2.11) 

It follows from the inequalit 
have only one eolutlon. Ale0 [ 3 v 

(2.10) that the problem (2.1),(2.2) oen 
, It follows from (2.10) that the operator 

L Is a c oeed operator in the epeoe 
t 

D 
valwe R t) of the operator t 

,,, or ln other worde, the eat of 
is a oloeed eubepace of the epaoe t,. We 

will show that R(L) ooincidee with the entire L., i.e. that the operator 
le@lemcnte the mutually sinale valued mapping of the epaoe Do on L 
mean8 that ior eny (fI, fp) EL4 there 
- {Y J,), or that the problem (2.1),(2 

be euoh (2, I/) E D,,, that iir'f21:' 

For #.he proor ~oi the colncldenoe of 
has a eolution for all {f, f} Etr. 

no element of [x,Y difkerent rrom 
and La we wll1 ehou that t ha8 

orthogonal to all R(L) , i.e. 
we will show that 1 f 

b 

s 
{x* (t) [Z’ (‘) - A (1) 2 (t) - B (t) z (f - f) + c MY P)l + (2.12) 

+ Y+ (t) am' +&)y (t)+ II* (t +-r)Y(t +T) + D(t)3 U)lI~t =‘A (2, Y)E Do 

then it follows that X(t) E 0, Y(t) ~0. 

Il~l!r,+II~llL,5~,uM”~~~ WL, (2.13) 

is valid where Al* denotes the expanelon of the operator rY over L, We 
note, rlnelry, that the genetall-d eolutlon or the roblem (2.5),(2.%) oan 
be determined not only with the aid of the identity P 2.7) but ale0 a8 a eolu- 
tion or the operational equation 

M0 {Xs YI = kl, a) (2.14) 

But the solution or Equation 8OlUtlOn of the 
problem (2.5),(2.6), eatlerlee uniCWeM88 theorem 
or the generalized solution for the 
the lneqwlltp (2.11). 

tollawe direotly from 
Thus, Ii the lwqwlitlee 2.10),(2.11) are rcrtlrrled 

then It is proved that the problem (2.1),(2.2) lo unlqwl 
Vi, f*) EL,. The runotion8 from Do are aontlnuow in Co,8 T 

solvable for any 
end 

x’(t) = A @)z 0) + 13 (t)z 0 - 2) - c (c)i/ 0) + fi 0) 
Coneeqwntly, any solution of the problem (2.1),(2.2) belonging to DO 

me oontlnuoue first derivatives if the mtrloee A, B, C, D and fi, Ys 
are oontlnuoue in Co,b]. 

Thus, the exletenoe proof ror the unique eolutl n of the problem (2.1), 
(2.2) is reduoed to the proof of the lnequalltlee 1 2.10) end (2.11). 

We will establish these lnequalltlee. We will prove at firet the elmpler 
lnequellty 

llzll L, + II Y II L Q G {II fl II& + n.MzJ (2.15) 

The riret equation ln (2.1) Is dot muglt;lled by Y(t) , the second by 
x(t) and the two equations are euueeed. 

$ (2 (0, Y (t)) + (C (c)y (t), Y (0) + CD (c)z (4, = (0) + 

+ W 0+ 7)bl (t + r), 2! 0)) - (B (t)z (t - T), Y 0)) = Ifi (t), Y(C)) + (h (4 = 0)) (2.W 
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we integrate now (2.16) over t from a to b . Then on the strength of 
the condltlona (2.2), the first term of this equality vanishes and 

b b--t 

5 (B* (t -k T) y (t -I- I), x (t)) dt = 1 (B* (t _i- t)y (t t-z), x(t)) dt = 

a a-r 

(2.f7) 
a a 

Taking into account (2.17) we find that 
b b 

s 
{(C W Y (th Y PI> $ (D (t) c (G 2 (0): dt = 

s 
i(fldt)t Y (0) + (h (Q 5 (W dt (2.18) 

a a 

From (2.18) and due to (2.8) and (2.9), we find easily that 

(2.19) 

Equation (2.15) follows lnunedlately from (2.19). We note that the con- 
stant 0, In the Inequality (2.15) Is determined only by the quantities o 
and g . 

We eatablleh now 
x’(t 

b 

(2.10). 
multiplied by 

For thle the flret equation In (2.1) Is dot 
the second by 

in the interval [a, J ‘and are added. 
k(t) , the equations are integrated 

en to each of the derived Integrals 
we apply the inequality 

and set c - ‘/m . Then 

II 2’ llba d II Y' tlba Q 8 II A (t) x W Il~,a + 8 II C (t) Y W 111,: + 8 II B (t) x (t - 2’) IlLa + 
-t 8 U D (0 2 (c) llL* 4- 8 II A* P) Y (t) llL2 + 8 II B+ (t + T) Y (t + r) Il~,a i- 8 II f~ (4 11~; + 

f 8 II fa ItI 11.~: + '/a II 2’ Il~,2 + ‘/a II Y’ 11~~ (2.20) 

Let the elements of the matrices A, 8, C, P be meaeurable and bounded 
functions In Ca,b? Then utilizing the Inequality (2.15) we obtain from 
(2.20) the Inequality (2.10 
coefficients of the system t 

In whlah the constant C, depends only on the 
2.1). 

This provee the lnequallty (2.10). 
analogously to (2.15). 

The inequality (2.11) 1s established 
Thus the theorem le fully proved. 

Theorem 2.1. Let the matrices As B, C, D be meaeurable and 
bounded in 10, b] and the matrices C and D 
(2.9) almost everywhere ln IO, bl . 

satisfy the conditions (2.8), 
Then for any {fl, fi) EL, there exists 

a unique solution of the problem (2.1), (2.2) belonging to the space Do, 
If, In addition, the coefficient matrices of the system (2.1) and the 

rlght+and zldez of I and Is are oontlnuouz In [a, b], then the solution 
of the probleun (2;1), 12.2) haa f2ontinUOUtI derivatives. 

Note 1 Let us reduce the problem 
f 
1.4) to the problem (2.1),(2.2). 

It will be shown first that the problem (1.4 GM have only a unique eolutlon. 
;$eed, let {rXry ] and {x~,~~) be two solution8 

--8r y- 
d&ions. 

v,) is a solution of the problem 
the problem (1.4). Then 

ht then it follows from the 
with zero boundary con- 

=1 - 5s E 0, Yl - &4 = 0 

Let us now select the functions x0(t) and h(t) such that 
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%I (4 = 9 (4, t < n; =o (4 = ‘p (4 n<tfb 

Y/o (0 = 9 (41 b d t; lo (d = 4J (b), n<t<b (2.21 

Conalder the difference 5 (t) - 20 (1) = 23 (49 Y (4 - Yo (1) = Y3 0). It is 
eaay to see that (x3(t), v5(t)) 1 s a solution of the problem (2.1), (2.2) 
in which 

fl (t) = 30' ro - A (Ozo (t) - B wo 0 - 4 + c m/o (0 

fz (t) = Y,' (t) + A* w!Io 0) + B' u + a, (1 + 7) + D (i)s,(t) 

If cp and& Ic are quadratically Integrable over their regions of deflnl- 
tion, then {!I, fs} EL,, and if in addition Q and $ are continuous then 
also 2, and Jo are continuous. 

Having utilized the uniqueness of the solution fpr the problem (1.4) we 
Bee that the assertion of the Theorem 2.1 Is valid also for the problem(1.4). 

Note 2. Theorem 1 remains valid also when one of the numbers CI 
8 or both simultaneously become infinite. This can be easily seen if it is 
taken into account that the constants In the evaluations of (2.10),(2.11) 
are lndependect of the Integration interval, and that the space D,, Is under- 
stood as the function space quadtiatlcally summable and possessing a quadrati- 
cally summable first derivative. 

Note 3. For the case when the lag depends on time It Is possible 
to prove a type of the Theorem 2.1 for the problem of the form 

2' (t) - A (t)s (t) - B (tlz (t - t(y (4)) + c (t)y (t) = fl (t) 
Y’ (t) + A* (Z)y+) + B* (t + 2 0)) (1 -I- T’ (t))y (t + ‘c (t)) + D (0~ (t) = f2 (t) 

r (1) = 0, t < a; Y (t) = 0, t>b 

Here y(t) denotes an Inverse function to t - I (It is assumed that 
such a function exists). The special form of the equation ensures the ful- 
fillment of (2.17) in this case as well. The remaining proof Is literally 
repeated. 

3, We establish still another Indication for the existence of a unique 
solution of the problem (1.4). Let us Investigate a more general problem 

2' (t) = A (t)r (t) + B (1)~ (t - t (t))'im c (t)Y (t) + /I (t) 

Y’ (t) = D (t)y (t) + E (t)y (t + z (t)) + F (tb (t) + fa (t) (3.1) 

2 (t) = 'p (t), t < a; Y 0) = g 0). t > tJ (3.2) 

Here A, B C, D, 6 F are arbitrary continuous quadratic matrices of 
order m ; &) # Q(tj and JI(t), Y,(t) are continuous functions. 

The problem (3.1),(3.2) can be reduced to the Fredholm Integral equation 
of second kind, analogously to what was done In 11, and then prove the 
exietence of the solution for problem (3.1),(3.2 5 by the method of successive 
approximations. However, since the kernel of this integral equation Is not 
known expllcltly, ltisucre convenient to appl 
ImEMOns directly to the problem (3.1),(3.2 T 

the method of successive approx- 
. 

We will prove the following theorem. 

Theorem 3.1. Let the matrices A, B, C, D, I, F be continuous; 
9, +, .fi, Ya are also continuous. Let In addition 

b b 

5 (11 A (t) II + II B @I II + II F (0 II) dt d 6 < 1 5 (II C (0 II + II E (t) II f- II 11 (t) II) dt < 6 < 1 (3.3) 
s (1 
Then the 

problem (3.1 
roblem (3.1),(x.2) has a unique solution. Let us pass from the 
7 ,(3.2) to the Integral equations 
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b 

I)cfMe x*(t), pa(t) the 8ame way as in (2.21) and construct r%(t) and 
y,(t) In aooorclance with Formulas 

=1 (1) = 9 (tb (t \< 4 

s(r)=p(a)+~(A(r,)zh(r)+B(C) 20 ff--w 4-c (41 YoG) fh(U)fG 6 >, a) 
Q 

f/l(f) =9(f) (b 4;) 
b 

YI@) = 9 W + 5 ID tk) YO (0 + fi WYO tE + z (EN + F (4) “0 (El+ !a (4)) 4 tt f b) 
1 

Then the x.(t), v(t) are oonatrmted analogously, It is easy to see that 
in fulfilling the conditions (3.3) 

i.e. that the integral operator (3.4) is the contraction operator in the 

rehem 
It has a single Pixed point whloh ie the solution of the 

The Theorem 3.1 la proved. 
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